Oil and Gas News from OilGasDaily.Com  
OIL AND GAS
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
by Staff Writers
Gothenburg, Sweden (SPX) Apr 15, 2019

file illustration only

Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission. Unfortunately, hydrogen gas is highly flammable when mixed with air, so very efficient and effective sensors are needed. Now, researchers from Chalmers University of Technology, Sweden, present the first hydrogen sensors ever to meet the future performance targets for use in hydrogen powered vehicles.

The researchers' ground-breaking results were recently published in the prestigious scientific journal Nature Materials. The discovery is an optical nanosensor encapsulated in a plastic material. The sensor works based on an optical phenomenon - a plasmon - which occurs when metal nanoparticles are illuminated and capture visible light. The sensor simply changes colour when the amount of hydrogen in the environment changes.

The plastic around the tiny sensor is not just for protection, but functions as a key component. It increases the sensor's response time by accelerating the uptake of the hydrogen gas molecules into the metal particles where they can be detected. At the same time, the plastic acts as an effective barrier to the environment, preventing any other molecules from entering and deactivating the sensor. The sensor can therefore work both highly efficiently and undisturbed, enabling it to meet the rigorous demands of the automotive industry - to be capable of detecting 0.1 percent hydrogen in the air in less than a second.

"We have not only developed the world's fastest hydrogen sensor, but also a sensor that is stable over time and does not deactivate. Unlike today's hydrogen sensors, our solution does not need to be recalibrated as often, as it is protected by the plastic," says Ferry Nugroho, a researcher at the Department of Physics at Chalmers.

It was during his time as a PhD student that Ferry Nugroho and his supervisor Christoph Langhammer realised that they were on to something big. After reading a scientific article stating that no one had yet succeeded in achieving the strict response time requirements imposed on hydrogen sensors for future hydrogen cars, they tested their own sensor.

They realised that they were only one second from the target - without even trying to optimise it. The plastic, originally intended primarily as a barrier, did the job better than they could have imagined, by also making the sensor faster. The discovery led to an intense period of experimental and theoretical work.

"In that situation, there was no stopping us. We wanted to find the ultimate combination of nanoparticles and plastic, understand how they worked together and what made it so fast. Our hard work yielded results. Within just a few months, we achieved the required response time as well as the basic theoretical understanding of what facilitates it," says Ferry Nugroho.

Detecting hydrogen is challenging in many ways. The gas is invisible and odourless, but volatile and extremely flammable. It requires only four percent hydrogen in the air to produce oxyhydrogen gas, sometimes known as knallgas, which ignites at the smallest spark.

In order for hydrogen cars and the associated infrastructure of the future to be sufficiently safe, it must therefore be possible to detect extremely small amounts of hydrogen in the air. The sensors need to be quick enough that leaks can be rapidly detected before a fire occurs.

"It feels great to be presenting a sensor that can hopefully be a part of a major breakthrough for hydrogen-powered vehicles. The interest we see in the fuel cell industry is inspiring," says Christoph Langhammer, Professor at Chalmers Department of Physics.

Although the aim is primarily to use hydrogen as an energy carrier, the sensor also presents other possibilities. Highly efficient hydrogen sensors are needed in the electricity network industry, the chemical and nuclear power industry, and can also help improve medical diagnostics.

"The amount of hydrogen gas in our breath can provide answers to, for example, inflammations and food intolerances. We hope that our results can be used on a broad front. This is so much more than a scientific publication," says Christoph Langhammer.

In the long run, the hope is that the sensor can be manufactured in series in an efficient manner, for example using 3D printer technology.

Facts: The world's fastest hydrogen sensor

+ The Chalmers-developed sensor is based on an optical phenomenon - a plasmon - which occurs when metal nanoparticles are illuminated and capture light of a certain wavelength.

+ The optical nanosensor contains millions of metal nanoparticles of a palladium-gold alloy, a material which is known for its sponge-like ability to absorb large amounts of hydrogen. The plasmon effect then causes the sensor to change colour when the amount of hydrogen in the environment changes.

+ The plastic around the sensor is not only a protection, but also increases the sensor's response time by facilitating hydrogen molecules to penetrate the metal particles more quickly and thus be detected more rapidly. At the same time, the plastic acts as an effective barrier to the environment because no other molecules than hydrogen can reach the nanoparticles, which prevents deactivation.

+ The efficiency of the sensor means that it can meet the strict performance targets set by the automotive industry for application in hydrogen vehicles of the future by being capable of detecting 0.1 percent hydrogen in the air in less than one second.

+ The research was funded by the Swedish Foundation for Strategic Research, within the framework of the Plastic Plasmonics project.

Research Report: Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Detection

Related Links
Chalmers University of Technology
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Trump signs orders for 'revival' of US energy
Crosby, United States (AFP) April 11, 2019
In the US oil heartland on Wednesday, President Donald Trump announced the signing of two executive orders to accelerate the construction of oil and gas pipelines, dismaying environmentalists. The latest measures are in line with others his administration has taken to ease regulation of the energy sector, a major employer and source of growth in Texas, where he made the announcement to trade union operating engineers. "Too often, badly needed energy infrastructure is being held back by special i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
Tracking sludge flow for better wastewater treatment and more biogas

OU engineers discover novel role of water in production of renewable fuels

Mega-order from Finland for Dutch energy technology

Scientists turn back evolutionary clock to develop high-CO2-tolerant microalgae

OIL AND GAS
Helping flexible solar panels last longer

Durability vs. recyclability: Dueling goals in making electronics more sustainable

Catalyst research for solar fuels: Amorphous molybdenum sulfide works best

Mystery of negative capacitance in perovskite solar cells solved

OIL AND GAS
The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

OIL AND GAS
Framatome delivers GAIA fuel assemblies to complete first Enhanced Accident Tolerant Fuel concept

telent wins IT and comms contract for UK's first new nuclear plant in 25 years

Framatome invests 12.6 million euro on its site of Ugine and inaugurates its new VAR furnace

IAEA asks Saudis for safeguards on first nuclear reactor

OIL AND GAS
Using Space Systems for Climate Control

Farmers and nomads take to violence in drought-stricken Chad

Study shows arctic warming contributes to drought

Eco-tax championed, contested and still marginal in EU

OIL AND GAS
Engineers develop concept for hybrid heavy-duty trucks

Paris orders 800 new electric buses to fight smog

London rolls out strict vehicle emission charges

Dutchman ends 'world's longest electric car trip' in Australia

OIL AND GAS
Iran's leader urges Iraq to demand US withdraw troops

Pentagon increases number of U.S. troops killed by Iran in Iraq to 603

Millions of pilgrims travel to Shiite shrine in Iraqi capital

Post-IS Iraq treads fine line as it seeks regional role

OIL AND GAS
Sanctions delay plans for N. Korean beach resort: analysts

US designates Iran's Revolutionary Guards as terrorist organization

Turkey says US move against Iran Guards creates 'instability'

Iran president says US 'leader of world terrorism'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.