Oil and Gas News from OilGasDaily.Com  
OIL AND GAS
Remote predictions of fluid flow in fractures possible with new finding
by Staff Writers
West Lafayette IN (SPX) Feb 24, 2016


A graph of the scaling relationship between fluid flow and fracture stiffness is shown. The shape of the symbol indicates the fracture length scale from 0.0625 meter (circles) to 1 meter (triangle) and the colors correspond to different apertures. Image courtesy of Pyrak-Nolte. For a larger version of this image please go here.

A team of researchers has created a way to quickly and remotely evaluate fluid flow in subsurface fractures that could impact aquifers, oil and gas extraction, sequestration of greenhouse gases or nuclear waste and remediation of leaked contaminants.

Laura Pyrak-Nolte and David Nolte, both professors of physics at Purdue University, found a nearly universal scaling relationship between fracture stiffness and fluid flow that applies to low porosity rock, or roughly more than 50 percent of all rock on Earth.

Through this mathematical relationship the pair created a tool that, through a fracture's stiffness and depth, can reveal its potential fluid flow rate, which can be used to predict flow path and evaluate the hydraulic integrity of a site.

It has been difficult to create a universal way to evaluate fractures because of the wide range of sizes, from microns to kilometers. In addition, fractures in the Earth are dynamic and subject to frequent changes in stress, chemistry and fluid pressures, said Pyrak-Nolte, who led the work.

"When you look at all of these very different fractures, it seems like each would be different and the rates at which fluid could flow through them would be different," she said. "Now we have found the single underlying physical principle that explains them all."

The team also showed that high frequency wave measurement, in which seismic waves are used like radar to provide the basic dimensions of a fracture, can be used to obtain the stiffness of a fracture. When this technology is paired with the new scaling law, it allows for a remote scan of a fracture to reveal the potential fluid flow at a particular site and also to monitor potential changes in fluid flow at a site over time, Pyrak-Nolte said.

The findings are detailed in a paper in the journal Nature Communications that is currently available online.

Throughout her career Pyrak-Nolte has studied fractures in the Earth's subsurface and has developed tools and gathered information that led to this finding.

"Through decades of study of fractures and related science, we were able to pull together all of the threads and see the pattern in the tapestry," said Pyrak-Nolte who also has courtesy appointments in the Lyles School of Civil Engineering and the Department of Earth, Atmospheric and Planetary Sciences.

"I think this is a good example of the importance of long-term funding. Without the long-term support of the Department of Energy, I wouldn't have had the steady exposure in this area necessary to arrive at the creation of a very useful and practical tool."

Fractures have been considered one of the most difficult things to deal with in subsurface activities and their study has been a major area of focus for the DOE, said Nolte, who is Purdue's Edward M. Purcell Distinguished Professor of Physics.

"The units of measurement that describe the different fracture properties span 10 orders of magnitude, which means fluid flow varies by 10 orders of magnitude or more - fractures are mathematically all over the place," he said.

"If you had asked me just one year ago, I would have said there may not be a single relationship to bring it all together. We thought it might be different for each class of fracture. However, once we figured out the parameters and keys to linking them together, the data collapsed into one beautiful curve. It is amazing how radically different topologies can be and yet still be described by the same physical principle."

The researchers created mathematical functions that tie together mechanical and hydraulic properties of the fractures. From these mathematical functions they were able to create a graph in which one can use a fracture's stiffness to pinpoint where it falls in a curve describing fluid flow. The information and graph is freely available.

The team also looked at what would happen if a fracture eroded, as could occur during carbon sequestration, and found that the scaling law still held, Pyrak-Nolte said.

The stiffness of a fracture depends on the points of contact of the two surfaces involved. The more points of contact, the more stable or stiff the fracture. The key to linking this stiffness with fluid flow rate was the geometry, because both characteristics depended on a shared geometry, Nolte said.

The duo ran more than 3,600 simulations for each fracture type using Purdue's Rosen Center for Advanced Computing.

"For years this was our hypothesis and now it has finally been demonstrated," he said. "In the past people used averages from among the many different classes of fractures to inform their decisions, but these averages missed key points. Now we have a functional framework of how to treat fractures of different depths that captures important nuances."

In the future, the team hopes to further validate the methods at a field site with known fractures and to pursue the creation of a similar framework for the behavior of networks of fractures.

Approaching a universal scaling relationship between fracture stiffness and fluid flow - Laura J. Pyrak-Nolte and David D. Nolte


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Purdue University
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OIL AND GAS
One-step process to convert CO2 and water into liquid hydrocarbon fuel
Arlington TX (SPX) Feb 23, 2016
A team of University of Texas at Arlington chemists and engineers have proven that concentrated light, heat and high pressures can drive the one-step conversion of carbon dioxide and water directly into useable liquid hydrocarbon fuels. This simple and inexpensive new sustainable fuels technology could potentially help limit global warming by removing carbon dioxide from the atmosphere to ... read more


OIL AND GAS
The forecast for renewable energy in 2016

US, Canada and Mexico sign clean energy pact

Supreme Court deals blow to Obama climate plan

Online shopping about as "green" as a three dollar bill

OIL AND GAS
New synthesis method developed at UEF opens up new possibilities for Li-ion batteries

Cogeneration sector supportive of a comprehensive follow-up to the Heating and Cooling Strategy

Explosive Growth Attracts Major Energy Storage Suppliers in Australia

Creation of Jupiter interior, a step towards room temp superconductivity

OIL AND GAS
WELTEC Group Acquires 3.3 MW Biogas Plant

ONR engineers innovative research in synthetic biology

Best regions for growing bioenergy crops identified

Titan probes depths of biofuel's biggest barrier

OIL AND GAS
First Unit of Russia-India Kudankulam NPP Reconnected to Grid

New nuclear plants indication of growing trust between Russia and Iran

US Westinghouse Fuel Delivered to Biggest Ukrainian Nuclear Power Plant

Germany's RWE suspends dividends

OIL AND GAS
French environment minister to head UN climate forum

A million children severely malnourished in eastern, southern Africa: UN

Climate deal will live on, despite US blow: experts

French ex-FM Fabius says will quit as head of UN climate forum

OIL AND GAS
Plaintiffs sue Mercedes alleging emissions cheating

Volvo Cars high-end drive pays off in 2015 profits

China auto sales jump nearly 8% in January: group

Automakers aren't doing enough to cut emissions: NGO

OIL AND GAS
Canada sending military helicopters to Iraq: minister

Three Americans seized in Iraq have been released: US

Mustard gas 'used in Iraq' in August

Iraqi girl's home burned after she criticised governor

OIL AND GAS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.