Oil and Gas News from OilGasDaily.Com  
OIL AND GAS
Making clean hydrogen is hard, but researchers just solved a major hurdle
by Staff Writers
Austin TX (SPX) Jul 20, 2021

Graphic shows the basic geometry and functionality of the photoanode device.

For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source - splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

"You need materials that are good at absorbing sunlight and, at the same time, don't degrade while the water-splitting reactions take place," said Edward Yu, a professor in the Cockrell School's Department of Electrical and Computer Engineering.

"It turns out materials that are good at absorbing sunlight tend to be unstable under the conditions required for the water-splitting reaction, while the materials that are stable tend to be poor absorbers of sunlight. These conflicting requirements drive you toward a seemingly inevitable tradeoff, but by combining multiple materials - one that efficiently absorbs sunlight, such as silicon, and another that provides good stability, such as silicon dioxide - into a single device, this conflict can be resolved."

However, this creates another challenge - the electrons and holes created by absorption of sunlight in silicon must be able to move easily across the silicon dioxide layer. This usually requires the silicon dioxide layer to be no more than a few nanometers, which reduces its effectiveness in protecting the silicon absorber from degradation.

The key to this breakthrough came through a method of creating electrically conductive paths through a thick silicon dioxide layer that can be performed at low cost and scaled to high manufacturing volumes. To get there, Yu and his team used a technique first deployed in the manufacturing of semiconductor electronic chips.

By coating the silicon dioxide layer with a thin film of aluminum and then heating the entire structure, arrays of nanoscale "spikes" of aluminum that completely bridge the silicon dioxide layer are formed. These can then easily be replaced by nickel or other materials that help catalyze the water-splitting reactions.

When illuminated by sunlight, the devices can efficiently oxidize water to form oxygen molecules while also generating hydrogen at a separate electrode and exhibit outstanding stability under extended operation. Because the techniques employed to create these devices are commonly used in manufacturing of semiconductor electronics, they should be easy to scale for mass production.

The team has filed a provisional patent application to commercialize the technology.

Improving the way hydrogen is generated is key to its emergence as a viable fuel source. Most hydrogen production today occurs through heating steam and methane, but that relies heavily on fossil fuels and produces carbon emissions.

There is a push toward "green hydrogen" which uses more environmentally friendly methods to generate hydrogen. And simplifying the water-splitting reaction is a key part of that effort.

Hydrogen has potential to become an important renewable resource with some unique qualities. It already has a major role in significant industrial processes, and it is starting to show up in the automotive industry. Fuel cell batteries look promising in long-haul trucking, and hydrogen technology could be a boon to energy storage, with the ability to store excess wind and solar energy produced when conditions are ripe for them.

Going forward, the team will work to improve the efficiency of the oxygen portion of water-splitting by increasing the reaction rate. The researchers' next major challenge is then to move on to the other half of the equation.

"We were able to address the oxygen side of the reaction first, which is the more challenging part, " Yu said, "but you need to perform both the hydrogen and oxygen evolution reactions to completely split the water molecules, so that's why our next step is to look at applying these ideas to make devices for the hydrogen portion of the reaction."

Research paper


Related Links
University of Texas at Austin
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Swarm of autonomous tiny drones can localize gas leaks
Delft, Netherlands (SPX) Jul 15, 2021
When there is a gas leak in a large building or at an industrial site, human firefighters currently need to go in with gas sensing instruments. Finding the gas leak may take considerable time, while they are risking their lives. Researchers from TU Delft (the Netherlands), University of Barcelona, and Harvard University have now developed the first swarm of tiny - and hence very safe - drones that can autonomously detect and localize gas sources in cluttered indoor environments. The main challenge ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
Airbus joins SAF+ Consortium to for sustainable aviation fuels

Cleaner air has boosted US corn and soybean yields

Unlocking the power of the microbiome

Switching it up to make better grass for bioenergy crops

OIL AND GAS
Germany, Ireland more open than U.S. to renewable energy close to homes

Sparkwing solar panels from Airbus to power lunar mission of Masten

Japan ups 2030 renewables goal in draft energy policy

Singapore inaugurates new floating solar farm to meet energy needs

OIL AND GAS
Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

For golden eagles, habitat loss is main threat from wind farms

Shell, France's EDF to build US offshore windfarm

Wind and the sun power Greek islands' green energy switch

OIL AND GAS
Framatome achieves milestone in development of advanced fuel technology

GE Hitachi Nuclear Energy Invests in Ontario Jobs

Slovenia issues permit for second nuclear reactor

Steam Generating Team JV contracted to replace Units 3 and 4 at Bruce NPP

OIL AND GAS
Germany floods push climate change to front of election campaign

Putin says Russia, US have 'common interests' on climate change

NASA, European Space Agency join forces on climate change

Yellen calls on G20 to step up climate action

OIL AND GAS
Ford, Lyft to collaborate on autonomous ride-hailing venture

Self-driving car startup Aurora on road to going public

Will drivers get burned by EU ban on ICE cars?

UK publishes plans to decarbonise transport by mid-century

OIL AND GAS
Armed men who attacked Baghdad hospital arrested: police

Biden to host Iraqi PM at White House on July 26

Iraq says suspects arrested for murder of academic Hashemi

Iraq and US discuss troop withdrawal, after Iran talks

OIL AND GAS
Iran confirms no new round of nuclear talks before new govt

Facebook says Iran-based spies targeted defense workers

Rouhani says hopes Iran's next govt can conclude nuclear talks

US lets Iran use frozen funds to pay back Japan, S.Korea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.