![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Washington DC (SPX) Mar 07, 2017
Researchers have developed a simple device that can detect an oil spill in water and then pinpoint the type of oil present on the surface. The device is designed to float on the water, where it could remotely monitor a small area susceptible to pollution or track the evolution of contamination at a particular location. "Fast detection of a spill is crucial for a quick antipollution response to avoid, as much as possible, the progressive mixture of the oil into the water, which would make cleaning more difficult and inefficient," said the leader of the research team, Jose R. Salgueiro of Universidade de Vigo, Spain. "Also, knowing the oil type makes possible a more specific response to counteract the pollution." While there are technically complex and expensive instruments that use aircraft or satellites to look for oil across large areas, the new work shows that it is possible to make a simple and effective device that can be used to monitor a certain area on an ongoing basis. In The Optical Society's journal Applied Optics, the researchers describe their new low-cost oil-sensing device and detailed it's capability to distinguish from five types of oil tested in the study.
Detecting oil's fluorescence fingerprint Although most instruments that detect fluorescence use an expensive and delicate spectrometer, the researcher team used an inexpensive and simple setup of four photodiode detectors with different colors of cellophane film filters. This let them record four signals, each consisting of different regions of the fluorescence spectrum. The device uses inexpensive UV LEDs as light sources and a low-cost microcontroller like the ones used to operate drones. It also includes a commercial radio module to send data and receive configuration commands. The researchers tested their instrument by conducting laboratory measurements on three types of crude oil provided by an oil company and two types of refined oil. They recreated the conditions of an oil spill by generating thin films of each type of oil on a water surface. "The four signals proved to be enough to build a specific fingerprint for every oil type used in our study, letting us identify the different types of oil," said Salgueiro. "This approach dramatically reduces the cost of the instrument and simplifies contamination testing."
Testing in a natural environment The investigators are also working to record the fluorescence fingerprints for other common types of oil that weren't included in this study so that even more types of oils could be identified. "Our device could help keep better track and control of pollution, especially by detecting potential pollution sources," said Salgueiro. "Once the pollution is produced it will help to quickly detect the problem, identify the nature of the pollution and contribute to a better response." Paper: O. Sampedro and J.R. Salgueiro, "Remote photonic sensor to detect crude and refined oil," Applied Optics, Vol. 56, Issue 8, 2150-2156 (2017). DOI: 10.1364/AO.56.002150
![]() Oslo (UPI) Mar 06, 2017 After revising the reserve estimate for a producing field in the North Sea, a division of Lundin Petroleum said it was appraising the latest discovery. The Norwegian subsidiary of the company said it started drilling an appraisal well in the Gohta discovery in the Edvard Grief field. "Following the 2016 year-end reserves additions on Edvard Grieg in relation to a larger oil colum ... read more Related Links The Optical Society All About Oil and Gas News at OilGasDaily.com ![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |