Oil and Gas News from OilGasDaily.Com
OIL AND GAS
Facile and scalable production of a fuel-cell nanocatalyst for the hydrogen economy
Microscopic (STEM and TEM) images of the developed catalyst and its PEMFC power performance. Compared to the state-of-the-art fuel cell catalysts, the catalyst developed by the CNR-IBS team showed almost twice the power performance per platinum use. (Lower panel) Schematic illustration of the growth process of the Co-Pt alloy nanocatalyst. Simple heat treatment at 900C could produce atomically ordered Co-Pt nanoparticles on a carbon support
Facile and scalable production of a fuel-cell nanocatalyst for the hydrogen economy
by Staff Writers
Daejeon, South Korea (SPX) Feb 17, 2023

A fuel cell is an electric power generator that is capable of producing electricity from hydrogen gas while discharging only water as a waste product. It is hoped that this highly efficient clean energy system will play a key role in the adoption of the hydrogen economy, replacing the combustion engines and batteries in automobiles and trucks, as well as power plants.

However, the cost of platinum, which can be up to ~30,000 USD per kg, has been a major limitation, making fuel cell catalysts to be prohibitively expensive. The production methods of highly-performing catalysts have also been complicated and largely limited. Accordingly, the development of a facile and scalable production method for platinum-based fuel cell catalysts is an urgent challenge, together with enhancing catalytic performance and stability while using a minimum amount of platinum.

To tackle this issue, a research team led by Prof. SUNG Yung-Eun and Prof. HYEON Taeghwan at the Center for Nanoparticle Research (CNR) within the Institute for Basic Science (IBS), South Korea has discovered a novel method for the production of nanocatalysts. The researchers demonstrated that these uniformly sized (3-4 nanometers) cobalt-platinum (Co-Pt) alloy nanoparticles can be produced by simple heat treatment. This method has combined features of the ease of the synthesis of the impregnation method, along with the precise control over the size and shape of the nanocrystals similar to the colloidal method.

The novel Co-Pt alloy nanocatalysts developed by the CNR-IBS team consist of two oppositely-charged metal complexes, specifically Co and Pt ions surrounded by bipyridine and chlorine ligands, respectively. The research team hypothesized that a simple heat treatment would cause the bipyridine ligand to thermally decompose into a carbon shell that can protect the growing Co-Pt alloy nanoparticles. After optimizing the heat treatment condition, they succeeded in obtaining a highly uniform nanocatalyst with nanoparticles of only 3-4 nanometer sizes.

In the nanocatalyst developed by the group, Co and Pt atoms were arranged in a regular way called the 'intermetallic phase', where the unstable Co atoms are stabilized by the surrounding Pt atoms. Additionally, when nitrogen was effectively doped onto the carbon support, ionomers (proton conductors) were homogeneously dispersed over the entire catalyst layer in the fuel cell, which better facilitated the supply of oxygen gas to the surface of the Co-Pt nanocatalyst.

These structural features added up to a much-enhanced power performance in the proton-exchange-membrane fuel cell, exhibiting high specific rated power of 5.9 kW/gPt, which is about twice that of the current performance in a commercial hydrogen vehicle.[1] The catalyst produced by the team has achieved most of the 2025 targets set by the U.S. Department of Energy (DOE) with the goal of stable long-term operation of the fuel cell.

The CNR-IBS team strongly believes that this study would stimulate the development of next-generation fuel cell catalysts. These findings would also contribute to the improvements in the catalytic performance and durability of alloy nanocatalysts for various other electrocatalytic applications.

Prof. Hyeon, stated, "Design of a novel bimetallic compound as a precursor material has been the critical starting point in this study. We have developed a platform technology to produce a complicated form of alloy nanocatalysts through a simple and scalable method, and finally achieved an enhanced fuel cell power performance with less amount of platinum used."

Prof. Sung remarked, "A world-class level of fuel cell performance has been achieved in this research, surpassing most of the 2025 targets of U.S. DOE by lessening the amount of platinum that can contribute up to around 40% of the cost of fuel cells." He added, "We expect that this study, together with some follow-up studies, would greatly impact the growth of the hydrogen vehicle industry and the realization of hydrogen economy in the near future."

Research Report:Scalable production of an intermetallic Pt-Co electrocatalyst for high-power proton-exchange-membrane fuel cells

Related Links
Institute for Basic Science
All About Oil and Gas News at OilGasDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
OIL AND GAS
Amazon pollution: the stain on Ecuador's oil boom
Lago Agrio, Ecuador (AFP) Feb 17, 2023
Lago Agrio is where it began in February 1967: Ecuador's first oil well drilled by the US Texaco-Gulf consortium to ring in an era of black gold for the Ecuadoran Amazon. "On that day, ministers and officials bathed in oil. Then they threw it in the river... a good start," Donald Moncayo, coordinator of the Union of People Affected by Chevron-Texaco (Udapt), told AFP, ironically. Fifty-six years later, the oil continues to flow, some 500,000 barrels per day that President Guillermo Lasso has v ... read more

OIL AND GAS
How a record-breaking copper catalyst converts CO2 into liquid fuels

Biogas produced with waste from apple juice making can minimize use of fossil fuels in industry

Biorefinery uses microbial fuel cell to upcycle resistant plant waste

Emirates announces 'milestone' sustainable fuel flight

OIL AND GAS
Perovskites, a 'dirt cheap' alternative to silicon, just got a lot more efficient

Nanoparticles self-assemble to harvest solar energy

Physicists solve durability issue in next-generation solar cells

Non-fused-ring donors and acceptors boost organic solar cell efficiency to over 14 pecent

OIL AND GAS
Machine learning could help kites and gliders to harvest wind energy

Polish MPs vote to make building wind turbines easier

New research shows porpoises not harmed by offshore windfarms

UH professor developing new technologies to improve safety, resiliency of offshore energy systems

OIL AND GAS
Using combustion to make better batteries

Preparing students for the new nuclear

Ukraine fallout pushes French nuclear giant EDF into historic loss

Lifespan of Finland's first nuclear plant extended to 70 years

OIL AND GAS
'Feedback loops' worsening climate crisis: report

Heat and cold records broken in just five days in Argentina

Before global warming, was the Earth cooling down or heating up?

Could space dust help protect the earth from climate change?

OIL AND GAS
Ford halts output of F-150 Lightning through at least next week

White House unveils deal with Musk on EV chargers

German court dismisses Greenpeace's case against Volkswagen

EU to ban fossil fuel cars, slash truck and bus emissions

OIL AND GAS
Four Iraqi soldiers killed in raid on suspected IS fighters

Iraqis protest after father kills YouTuber daughter

Iraq to hang 14 people for IS massacre of cadets

Iraq repatriates 142 families from Syria camp

OIL AND GAS
UN Security Council 'silence' on N. Korea missiles 'dangerous', US says

Putin hurts arms control but nuclear risk remote: experts

Putin suspends US nuclear treaty, Biden vows Russia will never win

New START: key Obama-era nuclear disarmament treaty

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.