![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Dalian, China (SPX) May 16, 2022
Damaged ecosystems are sending signals of global climate crisis and energy scarcity to wake human beings up to respond by reducing excessive carbon dioxide and producing green sustainable energy. The enormous potential is maintained by piezocatalysis, the absence of daylight constraints and abundant energy sources, including vibration, water flow, friction, tidal power, water droplets and human movement. Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day. Piezoelectric materials for catalysis are emerging and enriching, including perovskite-type materials (e.g. BaTiO3, ZnSnO3, CH3NH3PbI3), wurtzite-type materials (e.g. ZnO, ZnS and CdS), two-dimensional (2D) materials (e.g. MoS2, Bi2WO6 and 2D black phosphorus) and organic polymer (e.g. poly(vinylidene fluoride) (PVDF), polydimethylsiloxane (PDMS) and graphite carbon nitride). Some wurtzite crystal materials with non-centrosymmetric (NCS) structure have been found to be promising piezocatalytic materials to alleviate the bottleneck of photocatalytic efficiency. The typical NCS wurtzite structured CdS with a space group of P63mc and point group of 6mm shows piezoelectric effect, which is expected to effectively speed up the separation of carriers and increase the overall catalytic efficiency through piezoelectric polarization field. Unfortunately, the high-efficiency piezocatalytic hydrogen production of CdS-based materials has remained challenging so far, which is limited to the rapid recombination and deactivation of photogenerated carriers. Recently, a research team led by Prof. Hongwei Huang from China University of Geosciences (Beijing) reported that two types of CdS nanostructures, namely CdS nanorods and CdS nanospheres, were prepared to probe the above-mentioned issues. Under ultrasonic vibration, CdS nanorods afforded a superior piezocatalytic H2 evolution rate of 175 umol g-1 h-1 in the absence of any co-catalyst, which is nearly 2.8 times that of CdS nanospheres. The higher piezocatalytic activity of CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability, affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers, as elucidated through piezoelectric response force microscope, finite element method, and piezoelectrochemical tests. This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.
Research Report:Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution
![]() ![]() Peru sues Spain's Repsol for $4.5 bn over oil spill Lima (AFP) May 14, 2022 Peru has filed suit against Spanish energy company Repsol over the massive January oil spill that ravaged its coast, seeking $4.5 billion in damages. The lawsuit was filed before the 27th civil court in Lima against six companies: Repsol (Spain), Mapfre Global Risks (Spain), Mapfre Peru Insurance and Reinsurance Companies (Peru), La Pampilla Refinery (Peru), Transtotal Maritime Agency (Peru) and Fratelli d'amico Armatori (Italy, owner of the tanker involved), Peru's consumer protection agency said. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |