![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers West Lafayette IN (SPX) Aug 21, 2017
Researchers have discovered a new reaction mechanism that could be used to improve catalyst designs for pollution control systems to further reduce emissions of smog-causing nitrogen oxides in diesel exhaust. The research focuses on a type of catalyst called zeolites, workhorses in petroleum and chemical refineries and in emission-control systems for diesel engines. New catalyst designs are needed to reduce the emission of nitrogen oxides, or NOx, because current technologies only work well at relatively high temperatures. "The key challenge in reducing emissions is that they can occur over a very broad range of operating conditions, and especially exhaust temperatures," said Rajamani Gounder, the Larry and Virginia Faith Assistant Professor of Chemical Engineering in Purdue University's Davidson School of Chemical Engineering. "Perhaps the biggest challenge is related to reducing NOx at low exhaust temperatures, for example during cold start or in congested urban driving." However, in addition to these "transient" conditions, future vehicles will naturally operate at lower temperatures all the time because they will be more efficient. "So we're going to need catalysts that perform better not only during transient conditions, but also during sustained lower exhaust temperatures," Gounder said. He co-led a team of researchers who have uncovered an essential property of the catalyst for it to be able to convert nitrogen oxides. Findings will be published online in the journal Science on Thursday (Aug. 17) and will appear in a later print issue of the magazine. "The results here point to a previously unrecognized catalytic mechanism and also point to new directions for discovering better catalysts," said William Schneider, the H. Clifford and Evelyn A. Brosey Professor of Engineering at the University of Notre Dame. "This is a reaction of major environmental importance used to clean up exhaust." The work was performed by researchers at Purdue, Notre Dame and Cummins Inc., a manufacturer of diesel engines. "Cummins has been supporting Purdue chemical engineering research related to the abatement of engine emissions for the past 14 years," said Aleksey Yezerets, director of Catalyst Technology at Cummins. "This publication shows one example of the many insights into these complex processes that we have worked on together through the years." Zeolites have a crystalline structure containing tiny pores about 1 nanometer in diameter that are filled with copper-atom "active sites" where the chemistry takes place. In the new findings, the researchers discovered that ammonia introduced into the exhaust "solvates" these copper ions so that they can migrate within the pores, find one another, and perform a catalytic step not otherwise possible. These copper-ammonia complexes speed up a critical bond-breaking reaction of oxygen molecules, which currently requires an exhaust temperature of about 200 degrees Celsius to occur effectively. Researchers are trying to reduce this temperature to about 150 degrees Celsius. "The reason this whole chemistry works is because isolated single copper sites come together, and work in tandem to carry out a difficult step in the reaction mechanism," Gounder said. "It's a dynamic process involving single copper sites that meet to form pairs during the reaction to activate oxygen molecules, and then go back to being isolated sites after the reaction is complete." This rate-limiting step might be accelerated by fine-tuning the spatial distribution of the copper ions, leading to lower nitrogen oxide emissions at cooler temperatures than now possible. To make these discoveries, the researchers needed techniques that could "see" the copper atoms while the catalytic reaction was happening. No one technique is able to accomplish this, so they combined information from studies using high-energy X-rays at a synchrotron at Argonne National Laboratory, with molecular-level computational models performed on supercomputers at the Notre Dame Center for Research Computing and the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. "Beyond a doubt, we could not have made these discoveries without a diverse and tightly integrated team and access to some of the most powerful laboratory and computer tools in the country," said Schneider. Although the project focuses on "on-road" pollution abatement applications, the largest market share for zeolite catalysts is in petroleum refineries. The discovery has implications for "heterogeneous catalysis," which is widely used in industry. "Most catalytic processes in industry use heterogeneous technology," Gounder said. The paper was authored by Purdue graduate students Ishant Khurana, Atish A. Parekh, Arthur J. Shih, John R. Di Iorio and Jonatan D. Albarracin-Caballero; University of Notre Dame graduate students Christopher Paolucci, Sichi Li and Hui Li; Yezerets; Purdue professor of chemical engineering Jeffrey T. Miller; W. Nicholas Delgass, Purdue's Maxine Spencer Nichols Professor Emeritus of Chemical Engineering; Fabio H. Ribeiro, Purdue's R. Norris and Eleanor Shreve Professor of Chemical Engineering; Schneider; and Gounder. The research has been funded by the National Science Foundation and by Cummins Inc. "This research is part of our mission as a land-grant university," Gounder said. "We work with companies in the state of Indiana, and this work was an essential part in the education of many students."
![]() Washington (UPI) Aug 18, 2017 The expansion of a Texas oil pipeline is likely to support more production from the prolific Permian shale basin, the Federal Reserve Bank of Dallas said. Texas is the No. 1 oil producer in the United States and home to the Permian and Eagle Ford shale reservoirs, some of the more robust basins in the Lower 48. The latest monthly figures from the Federal Reserve Bank of Dallas show Perm ... read more Related Links Purdue University All About Oil and Gas News at OilGasDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |