![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Berlin, Germany (SPX) Aug 19, 2021
Large turbines in gas-fired power plants are some of the most effective machines for reliable energy supply. As this technology is set to continue to play a central role in the energy transition, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is working with Siemens Energy to develop the next generation of turbines. There is a dual focus to these efforts, with both parts closely connected to the sustainable reconfiguration of the energy system. Firstly, how can power plant turbines operate as safely and efficiently as possible, even with a partial load? In the near future, gas-fired power plants will increasingly serve as a reserve, as they can be started up quickly. This allows short-term failures in electricity production from renewable resources to be absorbed and peak loads to be covered reliably. Gas-fired power plants thus contribute towards secure and stable power supply in an energy system based on an ever-increasing proportion of renewable but fluctuating solar and wind energy sources. Secondly, how do gas turbines behave if alternative fuels are used instead of natural gas? These include biogas, synthetic gas or hydrogen as an admixture of almost 100 percent.
Unique test turbine meets high-tech DLR test stand The turbine is about half the size of those used in power plants and weighs 12 tonnes. DLR is one of the few institutions in the world with the ability to conduct tests at this scale under realistic conditions, as it has the necessary test stand infrastructure and expertise. It is vital for the hot flow of gas inside the turbine to reach transonic velocities of approximately Mach one. This is the only means of ensuring that important technical parameters can be reproduced in a comparable way. In addition to achieving the correct high velocities, temperature conditions are also important. If they are not correct, the cooling effects on the blades will not be meaningfully replicated. The test turbine has around 1000 measurement points over a length of approximately 1.5 metres. Compressed air measurement sensors, stationary pressure transmitters and optical measurement processes are all used. The latter make it possible to observe the flow inside the turbine without interfering with it, using special lasers. The measured data give an insight into the temperatures and pressure at specific points, how the gas flows behave and the condition of the blades. The metrological investigations also focus on determining the efficiency and flow losses, and analysis of heat build-up and cooling processes.
Pushing the boundaries - minimal cooling increases efficiency With that in mind, the team is pushing the technology to its very limits in testing. They are exploring where these limits lie during full load operation, while also investigating the lowest partial load operation, at around 20 percent of full load. At this operating point, all components in the power plant normally remain at the required temperature for the turbine to be ramped up again flexibly and quickly.
Vortices and turbulence - how do hot gas flows behave inside turbines? "In order to achieve the best possible cooling effects and thus high levels of efficiency, we look very closely at how gas flows in the turbine between the stators and rotors behave, which vortices and turbulences may arise there and how they all influence one another," explains Weggler. Following several extensive measurement campaigns, his team is hoping to have the first comprehensive data sets created by autumn 2021. These will then be compared with computer simulations. The 'digital twin' of the test turbine can thus be continuously improved and future developments accelerated. eunigt werden. In future, the team also want to investigate more closely how the turbine behaves when biogas, synthesis gas or natural gas / hydrogen mixtures are used. These fuels change the conditions within the turbine during combustion, which affects its operation. For this reason, the interaction between the combustion chamber and turbine will be examined more intensively and potential increases in efficiency determined, as careful use of valuable resources is set to remain a matter of great importance.
![]() ![]() Using aluminum and water to make clean hydrogen fuel - when and where it's needed Boston MA (SPX) Aug 16, 2021 As the world works to move away from fossil fuels, many researchers are investigating whether clean hydrogen fuel can play an expanded role in sectors from transportation and industry to buildings and power generation. It could be used in fuel cell vehicles, heat-producing boilers, electricity-generating gas turbines, systems for storing renewable energy, and more. But while using hydrogen doesn't generate carbon emissions, making it typically does. Today, almost all hydrogen is produced using fos ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |