Subscribe free to our newsletters via your
  Oil and Gas News from OilGasDaily.Com  

Subscribe free to our newsletters via your

Computer simulation discloses new effect of cavitation
by Staff Writers
Karlsruher, Germany (SPX) Mar 29, 2016

A cavitation bubble is formed in the lubricant between the oil-attracting (yellow) and the oil-repellent surface (black). When used as a buffer, it might reduce wear. Image courtesy KIT. For a larger version of this image please go here.

Researchers have discovered a so far unknown formation mechanism of cavitation bubbles by means of a model calculation. In the Science Advances journal, they describe how oil-repellent and oil-attracting surfaces influence a passing oil flow. Depending on the viscosity of the oil, a steam bubble forms in the transition area. This so-called cavitation may damage material of e.g. ship propellers or pumps. However, it may also have a positive effect, as it may keep components at a certain distance and, thus, prevent damage.

Materials and friction researchers wanted to know which influence chemically different surfaces have on the flow behavior of a lubricant. In particular, they were interested in flow behavior in nanometer-sized lubrication gaps, a critical case close to boundary friction, i.e. shortly before the surfaces are in direct contact.

For this purpose, they generated a mathematical model, in which they varied viscosity of the lubricant and surface properties of the walls. "We were very surprised to find cavitation in the transition area of the surfaces, i.e. at the boundary between oil-attracting and oil-repellent," Dr. Lars Pastewka and Professor Peter Gumbsch of KIT's Institute for Applied Materials report.

Cavitation is a known and feared physical phenomenon due to its destructive force. "Existing cavitation models assume a certain geometry that causes cavitation, such as a constriction in a pump or a ship's propeller producing high flow rates," Pastewka explains.

Here, Bernoulli's physical law applies, according to which static pressure of a fluid decreases with increasing flow rate. If static pressure drops below the evaporation pressure of the fluid, steam bubbles are formed. If pressure increases again, e.g. if the fluid flow rate decreases after having passed a constriction in a pump, the steam in the bubbles condenses suddenly and they implode. The resulting extreme pressure and temperature peaks lead to typical cavitation craters and significant erosion even of hardened steel.

"This sudden implosion of steam bubbles, however, does not occur in most lubricated tribosystems," Dr. Daniele Savio says, who has meanwhile taken up work at the Fraunhofer Institute for Mechanics of Materials in Freiburg.

"As the fluid gap between two contacting surfaces usually is very narrow, the cavitation bubbles cannot grow and, hence, remain stable. The cavitation bubble then has no destructive effect and even serves as a buffer that reduces wear and friction of the surfaces. It is therefore important to generate this positive effect in a controlled manner," he adds.

The simulation model of Savio and his colleagues confirms that chemically alternating surfaces may lead to cavitation bubbles. Their publication in Science Advances starts from the question of whether cavitation is the rule or an exception in situations where a lubricant flows between two surfaces.

"Usually, surfaces in engines or cylinder systems are never homogeneous, i.e. only oil-attracting or oil-repellent," Savio points out. "The effect calculated by us may therefore be encountered wherever alternating neighboring surface properties exist in lubricated engines and pumps."

So far, cavitation has been considered a geometric effect resulting from shear forces, flow rate, and pressure differences exclusively. "It is a completely new finding that cavitation can also occur in transition areas of alternating surface properties," Pastewka emphasizes. By the specific adjustment of surface chemistry, the researchers are convinced, interaction between surface and lubricant can be improved considerably. In the model simulations, an improved surface separation by 10% was observed.

"A distance increased by 10% means that normal forces and load carrying capacities of plain bearings can be increased," Savio adds. In any case, surface chemistry has to be re-evaluated as a design element in mechanical engineering, the scientists agree.


Related Links
Karlsruher Institut fur Technologie (KIT)
All About Oil and Gas News at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Emirati oil minister to attend April oil production meeting
Dubai, United Arab Emirates (UPI) Mar 24, 2016
The energy minister from the United Arab Emirates said Thursday his country would participate in an April meeting in Doha to consider oil production levels. Russia and members of the Organization of Petroleum Exporting Countries proposed a meeting in Doha to consider freezing oil production at January levels in an effort to stabilize the market for crude oil. Oil prices rallied last wee ... read more

Human impact forms 'striking new pattern' in Earth's global energy flow

Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

New chemistries found for liquid batteries

MIT develops nontoxic way of generating portable power

Creation of Jupiter interior, a step towards room temp superconductivity

Pumping up energy storage with metal oxides

ORNL invents tougher plastic with 50 percent renewable content

Dung, offal make clean gas at Costa Rica slaughterhouse

The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

Japan utility to scrap reactor over heavy safety costs

'No terror link' in murder of guard at Belgian nuclear centre

France's EDF to decide on UK nuclear plant by May: Macron

China's advanced meltdown-free nuclear plant gets core component

Plants boost extreme temperatures by 5C

Fires, drought in changing climate affecting high-altitude forests

Release of CO2 fastest in 66 million years: study

Climate variations analyzed 5 million years back in time

Newest Tesla electric will aim at middle market

US judge gives VW to April 21 for emissions fix plan

US unveils emergency braking deal with automakers

Industry calls for fast lane for self-driving cars

Iraq says begins offensive to retake IS-held Mosul

IS gains and losses in Iraq and Syria

Calm before the storm at Baghdad protest camp

Jihadist attack kills six soldiers in western Iraq


Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.